Project X RD&D Plan RR and MI Rings

Ioanis Kourbanis
Project X Collaboration Meeting
September 11-12, 2009

Outline

- Comparison between ICD-1 and ICD-2.
- Recycler requirements.
- MI requirements.
- Major R&D elements.
- Recent Progress.
- Tentative Plan for FY10.

ICD-1 Configuration

- •100 turns injection from Linac to RR
- •Phase space painting in RR.
- •One turn injection for RR to MI (bucket to bucket)

ICD-2 Configuration

- •Bucket to bucket transfer from RCS to RR (six injections)
- •One turn injection from RR to MI.

Project X Recycler Requirements

Description	Req.	Unit	
ecycler			
Energy	8	GeV	
Storage Efficiency	99.5	%	
Average Recycler Beam Current	0.6	A	
Availability	95	%	
Injection Rate	5	Hz	Second
Maximum Space Charge Tune Shift	0.05		
95% normalized transverse emittance	25	p-mm-mrad	harmonic rf
r.m.s. normalized transverse emittance	13	p-mm-mrad	
Bunching factor	2		
Longitudinal emittance per Bunch	0.5	eV-Sec	Longitudinal
Cycle Time	1.4	sec	
RF Frequency	53	MHz	painting (ICD-1
Abort Gap Length	700	nsec	only)
Peak Recycler Beam Current	2.356	Α	53 MHz rf system
Fast Extraction Rate	15	Hz	= 33 M(1211 3y31em)
Fast Extraction Pulse Length	1.6	microsec	

MI Requirements

Description	Req.	Unit	
ain Injector			
120 GeV cycle Time	1.4	sec	
RF Frequency	53	MHz	
Abort Gap Length	700	nsec	0 1 40/
Acceleration Efficiency	99	%	Only 1%
Main Injector Beam Current	2.356	A	allowable lo
Final Energy	120	GeV	
120 GeV Beam Power	2.1	MW	
Availability	87	%	
Injection Energy	8	GeV	
Longitudinal emittance per Bunch	0.5	eV-Sec	
Space Charge Tune Shift	0.05	0	
95% normalized transverse emittance	25	p-mm-mrad	
r.m.s. normalized transverse emittance	13	p-mm-mrad	Second
Bunching factor	2	0	harmonic rf.

Major R&D Elements

NO CHANGE BETWEEN ICD-1 AND ICD-2

- The current MI rf system does not have enough power to accelerate the beam. We currently have no second harmonic system in MI. Need a 53MHz rf system (including a second harmonic) for RR.
- The MI crosses transition.
- Electron cloud instabilities and mitigation.
- Beam stability and losses in both MI and RR.

Recent Progress (1) E-Cloud Simulations and Measurements

- Continued the e-cloud generation simulations with PONSIT
 - Comparison with RFA data helped fix SEY.
 - Comparison for two rf frequencies.
 - Simulation results for both bend and straight regions.
- Made great progress with e-cloud microwave measurements.
 - Data from both bend and field free regions.
 - Direct phase shift results.
- Developed and installed in the MI new improved RFA detectors.

Recent Progress (2) E-Cloud Mitigation

- Collaborated with BNL in coating with TiN two cylindrical 3ft beam pipes and installed one in MI.
 - An additional 10ft of cylindrical beam is going to be send for coating.
- We have developed a detailed plan with SLAC for the coating of a 20ft long elliptical beam pipe with hardware that can be used for in situ coating of the MI beam-pipe.

MI E-CLOUD SET-UP

Recent Progress (3)New MI/RF System

- Developed a cavity design that meets all the requirements for the fundamental 53MHz rf system.
- Have identified a power tube that will work for both 53 and 106
 MHz handle the currents required.
- Started work on a higher order mode damper.

Project X Tentative FY10 Plan (1)

MI/RR RF

- Continue the cavity simulations
- Work on a prototype
- Investigate the power tube mounting
- Tuner simulations and mechanical design

Project X Tentative FY10 Plan (2)

E-Cloud Simulations

- Continue the PONSIT simulations and comparisons with beam data.
- Compare with another generation code.
- Start beam dynamic simulations.

E-cloud Measurements

- New dedicated set-ups for microwave measurements.
- Compare the microwave results with the RFA for both coated and un-coated beam pipes.
- Try and measure tune shifts

E-Cloud Mitigation

- Develop hardware for in-situ TiN coating in MI.
- Set-up for beam-pipe coatings in Fermilab.
- Follow the developments in alternative coatings.

Project X Tentative FY10 Plan (3)

- Space charge simulations
 - How important is the space charge tune shift?
 - What are the losses as a function of bunching factor?
 - Check simulation results with current beam data.